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Abstract

In this paper, an adaptive ®nite element algorithm is proposed for resolving localization zones in plastic solids with

coupling to damage, whereby the solution is regularized via the introduction of gradient theory. It is possible to avoid

the mesh dependence that otherwise would become inevitable when the localization narrows progressively due to the

development of damage. The adaptive method is based on an a posteriori error computation in energy norm for

the plastic multiplier based on the constitutive subproblem, which is solved via a mixed ®nite element formulation. The

performance of the proposed method is investigated for a few simple numerical examples in 1D and 2D. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Higher order gradients can be introduced in order to regularize the solution pertinent to localization
phenomena that appear as discontinuities when the (usual) local continuum formulation is adopted. In
mathematical terms, this means that the function space for the displacements is reduced from the space of
``bounded variations'' (cf. Johnson and Scott, 1981; Temam and Strang, 1980) to a more conventional
Hilbert space.

Finite element algorithms, which are based on the truly mixed format in terms of displacements and the
plastic multiplier, have been proposed by many authors (Sluys et al., 1993; Pamin, 1994; de Borst and
Pamin, 1996; Li and Cescotto, 1996; Comi and Perego, 1996; Comi and Corigliano, 1996). A global
variational formulation of gradient theory of damage was proposed by Lorentz and Andrieux (1999).
However, due to the high regularity requirements of the plastic multiplier in the used variational formu-
lation(s), the resulting algorithms introduce numerical smearing of the plastic zone when the internal length
vanishes. In fact, it is desirable to design the algorithm in such a fashion that the usual algebraic constitutive
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(sub) problem pertinent to local theory is retrieved automatically (as a special case of the general algo-
rithm). In order to avoid the ``spurious gradient e�ect'', Svedberg and Runesson (1997, 1998) used a mixed
variational format of the constitutive relations, such that piecewise constant approximation of the plastic
multiplier can be introduced. It is then possible to solve the equilibrium equation and the constitutive
problem in an iterative fashion so that the usual algorithm for the local theory emerges naturally.

As a consequence of the gradient regularization, it is possible to reduce (if not completely avoid) mesh
dependence at the ®nite element (FE) analysis. For problems involving damage, the localization zone width
decreases progressively with deformation, and it is found that every (stationary) mesh eventually becomes
too coarse to resolve the localization scale. Hence, mesh dependence seems unavoidable. The obvious way
to remedy this situation is to adopt an adaptive FE strategy. However, it seems that few (if any) attempts
have been made so far to establish a reliable adaptive strategy based on a posteriori error computation in
the presence of gradient e�ects, which is the prime subject of the present paper. Suggestions in the literature
concern local continuum theory, which is even more challenging due to the possibility of strong discon-
tinuities. For example, a comparison of error indicators for dynamic localization is found in Belytschko
and Tabbara (1993), and h-adaptivity in the presence of discontinuities is discussed by Zienkiewicz et al.
(1995). The used error indicators are of the heuristic type, i.e. they are not based on an underlying
mathematical analysis of the error characteristics for the considered problem type involving localization.

The paper is organized as follows: Section 2 presents the basic constitutive relations involving gradients
for a model problem in metal plasticity (based on the von Mises yield criterion). These relations are brie¯y
summarized from Svedberg and Runesson (1997), to which the reader is referred for a comprehensive
investigation of the thermodynamic basis. The incremental relations are obtained upon using the fully
implicit method for temporal integration. The appropriate mixed variational format of the (incremental)
constitutive subproblem is established in Section 3, and the consequent ®nite element format is established.
Due to the nonlinear character of the constitutive relations, a Newton type iterative solution procedure is
outlined. Section 4 contains the derivation of an a posteriori error estimate in the (properly de®ned) energy
norm. This estimate is based on a given strain ®eld, i.e. only the constitutive error is included and the
equilibrium error(s) are disregarded in the present treatment. An adaptive strategy is also outlined. Finally,
the performance of the proposed adaptive algorithm is investigated in a series of numerical examples.

2. Constitutive relations involving gradients ± a model problem

2.1. Continuous format

In this paper, we consider a model problem based on the following assumptions: (1) small strain theory
with restriction to plane strain, (2) isotropic linear elasticity (for the recoverable part of the deformation),
(3) isotropic local damage of Chaboche/Lemaitre type, (4) isotropic local hardening, which is nonlinear of
the saturation type, (5) anisotropic linear gradient hardening, and (6) von Mises yield criterion. As a
consequence of the introduced assumptions, we may obtain constitutive relations from the proper ther-
modynamic considerations for the stress r, the e�ective stress r̂ and the dissipative stresses K, Kg and A
(representing local hardening, gradient hardening and damage, respectively) within the given spatial do-
main X:

r � �1ÿ a�r̂ with r̂ ee� � � Ee : ee; ee �def
eÿ ep; �1�

K�j� � ÿHj; �2a�

Kg�jg� � l2$ � Hg � $jg� �; �2b�
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A�ee� � 1
2
ee : Ee : ee; �3�

where e�u� � 1
2

$
 u� u
 $� � is the strain (operator), ee and ep are elastic and plastic parts of e, whereas j,
jg and a �06 a6 1� are auxiliary internal variables representing local hardening, gradient hardening and
damage, respectively. Moreover, Ee is the fourth-order tensor of constant elastic sti�ness moduli; H is the
constant (local) hardening modulus, and Hg is the second-order tensor of gradient hardening moduli (that
represents anisotropic gradient hardening). Finally, l is the internal length, which is subsequently assumed
constant representing a homogeneous micro-structure.

The von Mises yield criterion including gradient e�ect reads

U � r̂e�ee� ÿ ry ÿ K�j� ÿ Kg�jg�; �4a�

r̂e �def

���
3

2

r
jr̂devj; �4b�

where ry is the initial yield stress and r̂e is the equivalent e�ective stress.
We shall also need the evolution equations for the internal variables. These are the ¯ow, hardening and

damage rules that are given in terms of the plastic multiplier _l as follows:

_ep � _l
1ÿ a

m; m�ee� �def oU
or̂
� 3r̂dev

2r̂e

; �5�

_j � ÿ _l 1

�
ÿ K

K1

�
; _jg � ÿ _l; �6�

_a � _l
A�ee�

S�1ÿ a�m ; �7�

where K1 is the saturation value of the (local) isotropic hardening, whereas S and m are constitutive
parameters that determine the rate of development of damage.

The plastic multiplier is determined by complementary Kuhn±Tucker (KT) conditions:

_lP 0; U6 0; _lU � 0: �8�
Finally, the appropriate boundary condition on _l is of the Neumann type:

n � l2Hg � $ _l � 0; x 2 C; �9�
where n is the outward normal to the boundary C of X.

Remark 1. Although other boundary conditions are possible (admissible) from a thermodynamic viewpoint (cf.
Svedberg and Runesson, 1997), the homogeneous condition (9) is the only one that will ensure that a bifur-
cation problem arises from a homogeneous state within X.

2.2. Incremental format from implicit integration

After implicit integration of the rate equations (5)±(7), we obtain the updated values at time tn�1
1 in

terms of values at time tn (indicated by a super-index n):

1 Super-index n� 1 is omitted for brevity.
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ee � nee;tr ÿ Dl
1ÿ a

m�ee� with nee;tr � eÿ nep; �10�

j � njÿ Dl 1

�
ÿ K�j�

K1

�
; �11a�

jg � njg ÿ Dl; �11b�

a � na� Dl
A�ee�

S�1ÿ a�m : �12�

The incremental format of Eq. (8) is

DlP 0; U6 0; DlU � 0: �13�
Due to the linear character of the gradient hardening, we may eliminate jg by inserting Eq. 11b into Eq.

4a and using Eq. 2b to obtain

U � ÿf �ee; j� � l2$ � Hg � $�Dl�� �; �14�
where we introduced the notation

f �ee;j� � ÿr̂e�ee� � ry ÿ Hj� nKg: �15�
We remark that the last term of f �ee; j� stems from the gradient e�ect.
Because of the nonlinear character of Eqs. (10)±(14), we rewrite these equations in terms of residuals that

must vanish (whereby we make the change of notation Dl ! l for brevity):

Re�l; ee; a� � ee ÿ nee;tr � l
1ÿ a

m�ee� � 0; �16�

Rj�l; j� � jÿ nj� l 1

�
ÿ K�j�

K1

�
� 0; �17�

Ra�l; ee; a� � aÿ naÿ l
A�ee�

S�1ÿ a�m � 0; �18�

Rl�l; ee; j� � ÿl2$ � Hg � $l� � � f �ee; j� � U � 0: �19�
We remark that it is only Eq. (19) that involves any gradient e�ect; Eqs. (16)±(18) are the same as in the

local theory.
We shall henceforth consider a more compact formulation of Eqs. (16)±(19) by introducing q�def �ee; j; a�T

as the column matrix containing all the components of ee in addition to j and a. The corresponding residual
matrix is Rq � �Re;Rj;Ra�T.

Remark 2. The vectors q and Rq can be extended to include more variables if this is found necessary (or
otherwise convenient) from modeling or numerical reasons.

Moreover, we shall complement the problem formulation with the KT-conditions (13) and the appro-
priate boundary condition to give the problem:

Rq�l; q� � 0 in X; �20�

Rl�l; q� � ÿl2$ � Hg � $l� � � f �l; q� � U � 0 in X; �21�

l P 0; U6 0; lU � 0 in X; �22�
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n � l2Hg � $l � 0 on C: �23�

Let us, next, consider the special case of local theory, de®ned by l � 0, in which case the problem is
completely algebraic and can be solved for each x 2 X independently. Hence, we obtain for x 2 X

Rq�l; q� � 0; �24�

Rl�l; q� � f �l; q� � U � 0; �25�

lP 0; U6 0; lU � 0: �26�
The problem is solved as follows: Check loading (L) or unloading (U) by setting l � 0 to obtain the

``trial'' value q � qtr from Rq�0; qtr� � 0 in Eq. (24). We then obtain the trial value Utr � ÿf �0; qtr� from Eq.
(25), whereby the KT-conditions (26) give two possibilities:
1. if Utr6 0, then (U),
2. if Utr > 0, then (L) since l � 0 is not possible.

3. Mixed variational format of constitutive problem

3.1. Strong and variational formulations

For reasons that were discussed in Section 1 (cf. Svedberg and Runesson, 1997), it is desirable to in-
troduce a special mixed FE-formulation of the constitutive problem (20)±(23). On introducing the gradient

g � Hg � $l; �27�
we replace Eqs. (20)±(23) by

Rq�l; q� � 0 in X; �28�

Rl�l; g; q� � ÿl2$ � g � f �l; q� � U � 0 in X; �29�

Rg�l; g� � Hg� �ÿ1 � g ÿ $l � 0 in X; �30�

lP 0; U6 0; lU � 0 in X; �31�

n � g � 0 on C: �32�
Next, we introduce a variational format that admits l to be approximated (in the subsequent FE-for-

mulation) as piecewise constant. In order to do so, we ®rst de®ne usual scalar product and norm in the L2-
metric for u; u0 2 L2�X�

�u; u0� � �u; u0�L2�X� �
def

Z
X

uu0 dX; kuk �def
�����������
�u; u�

p
�33�

and the ``complementary energy'' product and corresponding norm for g

�g; g0�C �def

Z
X

g � Hg� �ÿ1 � g0 dX; kgkC �def
��������������
�g; g�C

q
: �34�

The proper spaces are

V � L2�X�; V � � fl 2 V ; l P 0 in Xg; �35�
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W � g 2 �L2�X��2; n � g
n

� 0 on C
o
: �36�

Remark 3. The condition n � g � 0, which is usually considered as a natural condition, is an essential boundary
condition in the proposed variational format.

The proposed variational format of Eqs. (28)±(31) is as follows: Find l 2 V � and g 2 W such that

ÿ�U; l0 ÿ l�P 0 8l0 2 V �; �37�

�g; g0�C � �l;$ � g0� � 0 8g0 2 W �38�
subjected to the conditions

Rq�l; q� � 0; �39�

Rl�l; g; q� � 0: �40�
It follows by inspection that Eq. (37) is identical to Eq. (31), and U can be eliminated in terms of l, g and

q from Eq. (40). Finally, Eq. (38) is the variational format of Eq. (30), which is a linear relation in l and g.
Due to the nonlinear character of the problem, we ®nd it more convenient to treat U as an independent

variable. Moreover, we may (formally) solve for q � q�l� from Eq. (39), 2 and we introduce the auxiliary
space

V ÿ � fU 2 V ;U6 0 in Xg; �41�
whereby the problem is slightly rephrased: Find l 2 V , U 2 V ÿ, and g 2 W such that

�Rl; l
0� � 0 8l0 2 V ; Rl �def ÿ l2$ � g � f l; q�l�� � � U; �42�

�Rg; g
0��def�g; g0�C � �l;$ � g0� � 0 8g0 2 W ; �43�

�l;U0 ÿ U�P 0 8U0 2 V ÿ: �44�
From the solution of Eq. (37), or Eq. (44), we de®ne the current loading region X�L� and unloading region

X�U�, with X � X�L� [ X�U�, as follows:

X�L� � fx 2 X; l�x� > 0;U�x� � 0g; �45�

X�U� � fx 2 X; l�x� � 0;U�x�6 0g: �46�

3.2. Mixed ®nite element approximation

In order to be speci®c, we introduce Mh � fXeg as a standard FE subdivision (or mesh) of triangular
elements (in 2D). The diameter of each element is denoted by he. We shall consider h�x� as a function on X,
de®ning the local mesh size, such that h�x� � he when x 2 Xe.

On introducing subspaces Vh � V , V ÿh � V ÿ and Wh � W , we can now formulate the Galerkin version of
Eqs. (42)±(44) as follows: Find lh 2 Vh, Uh 2 V ÿh , and gh 2 Wh such that

2 In practice, this solution must be obtained by iteration and is given later.
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�Rh
l; l

0
h� � 0 8l0h 2 Vh; Rh

l � ÿl2$ � gh � f lh; q�lh�� � � Uh; �47�

�Rh
g; g

0
h� �def �gh; g

0
h�C � �lh;$ � g0h� � 0 8g0h 2 Wh; �48�

�lh;U
0
h ÿ Uh�P 0 8U0h 2 V ÿh : �49�

We may also establish the Galerkin-orthogonality relations, which are obtained as follows: Set
l0 � l0h 2 Vh in Eq. (42) and g0 � g0h 2 Wh in Eq. (43). Subtract Eqs. (47) and (48) from the resulting ex-
pression to obtainÿÿ l2$ � eg � f l; q�l�� � ÿ f lh; q�lh�� � � Uÿ Uh; l

0
h

� � 0 8l0h 2 Vh; �50�

�eg; g
0
h�C � �el;$ � g0h� � 0 8g0h 2 Wh; �51�

where we introduced the errors in l and g as

el � lÿ lh; eg � g ÿ gh: �52�
Subsequently, we shall in particular be concerned with the approximation (CL) de®ned as follows: Vh

consists of piecewise constants (which are clearly discontinuous across element boundaries), whereas Wh

consists of piecewise linears, which are continuous. For this choice, we assume that netr 2 Vh. It then follows
that q�lh� 2 Vh and, hence, f �lh; q�lh�� 2 Vh. We thus conclude that Rh

l 2 Vh, and from the variational
statement (47) follows that the ®nite element solution must be ``residual-free'' in the sense that Rh

l � 0 in X.

Remark 4. Since Rh
l � 0, there is no error from Eq. (47) or Eq. (49); hence, the complete error comes from Eq.

(48).

3.3. Iterative solution procedure

Since Rl is a nonlinear function of l and g, it is only at convergence of a suitably chosen iteration al-
gorithm that Rh

l � 0. We may employ Newton iterations to solve for lh and gh from the relations

Rl�lh; gh� � ÿl2$ � gh � f �lh; qh� � Uh � 0; x 2 X; �53�

�gh; g
0
h�C � �lh;$ � g0h� � 0 8g0h 2 Wh �54�

subjected to the conditions

lh P 0; Uh6 0; lhUh � 0; x 2 X; �55�

Rq�lh; qh� � 0: �56�

Remark 5. Since lh�x� � lh;e, Uh�x� � Uh;e, qh�x� � qh;e for e � 1; 2; . . . ;N (where N is the number of ele-
ments in the current mesh Mh), it appears that Eqs. (53), (55) and (56) represent element relations.

Upon linearizing Rq�l; q� � 0, we ®rst obtain

dq � Jq

ÿ �ÿ1
dRq

ÿ ÿ Jl dl
�
; �57�

where we introduced the Jacobian matrices

Jq �def oRq

oq
; Jl �def oRq

ol
: �58�

T. Svedberg, K. Runesson / International Journal of Solids and Structures 37 (2000) 7481±7499 7487



Inserting Eq. (57) into the linearized version of Eq. (53), we obtain

ÿl2$ � dgh � hdlh � sT dRq ÿ dUh � dRl; �59�

where we introduced the notation

h�def of
ol
� sTJl; s�def ÿ Jq

ÿ �ÿT of
oq
: �60�

Remark 6. If we consider f � f l; q�l�� �, then

h�def df
dl

; �61�

i.e. h is the Jacobian of f. We shall assume that h > 0 for all possible values of the argument l.

On setting dl :� l�k� ÿ l�kÿ1�, dgh :� g
�k�
h ÿ g

�kÿ1�
h , dUh :� U�k�h ÿ U�kÿ1�

h , dRl :� ÿRh�kÿ1�
l , dRq :� ÿRh�kÿ1�

q

and inserting these expressions into Eq. (59), we obtain the following mixed ®nite element problem to be
solved in each Newton step �k�:

ÿl2$ � g�k�h � h�kÿ1�l�k�h � Utr�kÿ1�
h ÿ U�k�h ; �62�

�g�k�h ; g0h�C � �l�k�h ;$ � g0h� � 0 8g0h 2 Wh; �63�

l�k�h P 0; U�k�h 6 0; l�k�h U�k�h � 0; �64�

where we introduced the ``trial value'' of U as follows:

Utr
h �def ÿ Rh

l � Uh ÿ sTRh
q ÿ l2$ � gh � hlh: �65�

How to solve for l�k�h , g
�k�
h and U�k�h in each iteration from Eqs. (62)±(64) in an e�cient manner was discussed

in some detail by Svedberg and Runesson, 1998; however, as part of a more restrictive setting. When l�k� is
known, it is possible to update q:

q�k� � q�kÿ1� � J �kÿ1�
q

� �ÿ1h
ÿ Rh�kÿ1�

q ÿ Jh�kÿ1�
l l�k�

ÿ ÿ l�kÿ1��i: �66�
The iteration algorithm for the constitutive sub (problem) is summarized below.
· k � 0:

1. Set l�0�h � 0, g
�0�
h � 0, U�0�h � 0.

2. Get ``trial state'' q
�0�
h from Rh

q�0; q�0�h � � 0.
3. Calculate Rh�0�

l .
· k > 0:

1. Calculate Utr�kÿ1�
h and h�kÿ1�.

2. Solve for l�k�h , g
�k�
h , U�k�h from

ÿl2$ � g�k�h � h�kÿ1�l�k� � Utr�kÿ1�
h ÿ U�k�h ;

l�k�P 0; U�k�h 6 0; l�k�U�k�h � 0:

(
3. Calculate the updated value q

�k�
h from Eq. (66).

4. Calculate Rh�k�
l and Rh�k�

q .
5. Check residuals against given tolerance, if not ful®lled, k ! k � 1 and continue iteration.
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4. A posteriori error estimate and adaptive strategy

4.1. Preliminaries

Subsequently, we shall establish a posteriori error estimates in the (suitably de®ned) energy norm. In
order to avoid excessive complexity, we introduce the simplifying assumption that X�L�h � X�L� (and
X�U�h � X�U�). This means that U � Uh � 0 in X�L�, whereas l � lh � 0 in X�U�. Hence, el � 0, eg � 0 in X�U�

and X�L� is the only region of interest. For the error analysis, it is then su�cient to set Uh � 0 in Eq. (47) and
to consider the (slightly simpli®ed) problem of ®nding lh 2 Vh and gh 2 Wh such that

�Rh
l; l

0
h� � 0 8l0h 2 Vh; Rh

l � ÿl2$ � gh � f lh; q�lh�� �; �67�

�gh; g
0
h�C � �lh;$ � g0h� � 0 8g0h 2 Wh: �68�

We shall also introduce the operator A�l; lh� de®ned by

A�l; lh� �def

Z 1

0

df
dl�

l��s�; q l��s�� �� �ds; l��s� � sl� �1ÿ s�lh; �69�

which has the useful property (cf. Eriksson et al., 1995)

Ael �
Z 1

0

d

ds
f l��s�; q l��s�� �� �ds � f l; q�l�� � ÿ f lh; q�lh�� �: �70�

Remark 7. In practice, we may evaluate A approximately as follows:

A ' df
dl�

l��0�; q l��0�� �� � � df
dl

lh; q�lh�� � � h�lh�; �71�

i.e. A can be computed as the Jacobian of f at l � lh.

We also introduce the norm associated with A: For u 2 L2�X�, we de®ne

kukA �
��������������
�Au; u�

p
: �72�

Since h > 0, it follows that k � kA is indeed a norm.

4.2. Error estimate in energy norm

We de®ne the error in the energy norm eE�lh; gh� as follows:

e2
E �def l2kegk2

C � kelk2
A � l2�eg; eg�C � �Ael; el�: �73�

Now, subtracting and adding the term l2�$ � eg; el� and using the property Eq. 70 of A, we may rewrite Eq.
(73) as

e2
E � ÿ�R̂1; el� � l2�eg; eg�C � l2�el;$ � eg�; �74�

where we introduced the notation R̂1 � Rl�lh; gh�. Integrating the last term in Eq. (74) by parts on each Xe

and collecting terms, we obtain the (exact) error representation

e2
E �

XN

e�1

E1;e

�
� E2;e � Ein

2;e

�
; �75�
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where the element contributions to the error are

E1;e � ÿ
Z

Xe

R̂1el dX; R̂1�lh; gh� � ÿl2$ � gh � f lh; q�lh�� �; �76�

E2;e � ÿl2

Z
Xe

R̂2 � eg dX; R̂2�lh; gh� � �Hg�ÿ1 � gh ÿ $lh; �77�

Ein
2;e � ÿl2

Z
Cin

e

heR̂in
2 n � eg dC; R̂in

2 �lh� � ÿ
1

2he
��lh��: �78�

We note that E2;e and Ein
2;e have the same dimension. Here, we introduced the notation Cin

e for the inter-
element part of the element boundary Ce, i.e. the part of Ce that does not intersect with the exterior
boundary C. Moreover ����� denotes the jump across an element boundary. More precisely, ��l�� � l� ÿ lÿ,
where l� is the value in the neighboring element, whereas lÿ is the value in Xe. Apparently, the residual
errors R̂1, R̂2 and R̂in

2 are computable from the ®nite element solutions lh and gh.
Henceforth, we shall consider the special element approximation (CL), de®ned above, with piecewise

constant lh and piecewise linear (but continuous) gh. We then conclude that

R̂1 � 0; R̂2 � �Hg�ÿ1 � gh; �79�
where it was used that $lh � 0 on Xe. Moreover, the jump term R̂in

2 , which is piecewise constant on each
inter-element part of Ce, represents (in some sense) the ``gradient of lh'' and thereby replaces the term ÿ$lh

for this choice of approximation. We thus obtain the reduced (but still exact) error representation:

e2
E �

XN

e�1

E2;e

�
� Ein

2;e

�
: �80�

We shall now endeavor to ®nd a function r 2 W such that it satis®es the following relation on Xe:Z
Xe

r � eg dX �
Z

Xe

R̂2 � eg dX�
Z

Cin
e

heR̂in
2 n � eg dC: �81�

To this end, we consider the more general problem of ®nding r 2 W such thatZ
Xe

r � g0 dX �
Z

Xe

R̂2 � g0 dX�
Z

Cin
e

heR̂in
2 n � g0 dC; 8g0 2 W : �82�

Clearly, on setting g0 � eg in Eq. (82), we obtain the error representation Eq. 81. Approximating r in the
®nite element sense (rather than solving for r exactly), we look for rh 2 Wh such thatZ

Xe

rh � g0h dX �
Z

Xe

R̂2 � g0h dX�
Z

Cin
e

heR̂in
2 n � g0h dC; 8g0h 2 Wh: �83�

Clearly, rh approximates r in the ``best way'' since rh is the projection of r onto the space Wh, i.e.
�rÿ rh; g

0
h�L2�Xe� � 0 for all g0h 2 Wh.

We are now in the position to evaluate the element error as follows:

e2
E�Xe� � ÿl2

Z
Xe

r � eg dX ' ÿl2

Z
Xe

rh � eg dX � ÿl2

Z
Xe

�rh � �Hg�ÿ1 � eg dX; �84�

where we introduced �rh � Hg � rh. Using Cauchy±Schwartz' inequality, we now obtain

e2
E�Xe�6 l2k�rhkC�Xe�kegkC�Xe�: �85�
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However, from Eq. (73), we have the trivial estimate

lkegkC�Xe�6 eE�Xe� �86�

which can be combined with Eq. (85) to give

eE�Xe�6 lk�rhkC�Xe�,eE6 lk�rhkC; �87�
where it is recalled that

k�rhkC �
XN

e�1

Z
Xe

�rh � �Hg�ÿ1 � �rh dX

 !1=2

�
XN

e�1

Z
Xe

rh �Hg � rh dX

 !1=2

: �88�

It is remarked that this error estimate, which provides a strict upper bound if we disregard the ap-
proximation r! rh in Eq. (84), does not involve any interpolation (or other) constants. This estimate is
rather of the Z2-type (cf. Zienkiewicz and Zhu, 1987), in the sense that rh represents the di�erence between
�Hg�ÿ1 � gh and the ``gradient of lh'' expressed as R̂in

2 (cf. Hansbo and Runesson, 1999).
In an adaptive strategy, we shall try to equidistribute the error over Mh, i.e. the contribution to e2

E from
each Xe should be equal. Hence, we would have in such an optimal situation

e2
E6

XN

e�1

l2

Z
Xe

rh �Hg � rh dX6
XN

e�1

l2reAe ' Nl2reh2
e ; �89�

where Ae � h2
e is the area of Xe and

re � max
x2Xe

jrh �Hg � rhj� �: �90�

From the stopping criterion eE6TOL, where TOL is a given tolerance, we establish the recursion
formula for the jth mesh re®nement:

h�j�1�
e ' TOL

l
��������������
N �j�r�j�e

p : �91�

Remark 8. Recall the exact error representation

e2
E � ÿ

XN

e�1

l2

Z
Xe

r � eg dX �92�

It appears that eE � 0 when
· l � 0 (local theory),
· gh � 0, lh � const �homogeneous solution� , R̂2 � 0; R̂in

2 � 0 , r � 0.
With mesh re®nement, we expect r! 0 (rh ! 0) with the following motivation: Recalling Eq. (92) with Eq.

(81):

e2
E � ÿl2

XN

e�1

Z
Xe

R̂2 � eg dX

 
�
Z

Cin
e

R̂in
2 n � eg dC

!
�93�

However, the Galerkin orthogonality in Eqs. (50) and (51) gives

XN

e�1

Z
Xe

R̂2 � g0h dX

 
�
Z

Cin
e

R̂in
2 n � g0h dC

!
� 0; 8g0h 2 Wh: �94�
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Fig. 1. One-dimensional tension bar.

Table 1

Material parameters for one-dimensional problems

Common parameters Softening plasticity Plasticity and damage

E � 1000ry, m � 0:3 H � ÿ30ry H � 100ry

H g � jH j=�4p2� K1 � 1 K1 � 1:0ry

l � 0:3 m S � 1 S � 5� 10ÿ5ry

L0 � 1:0 m m � 1

Fig. 2. Results for adaptive meshes (softening plasticity): (a) load versus average strain, (b) currently active plastic zone, and (c) mesh

function in last loadstep.
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When the mesh is re®ned, i.e. the space Wh is enlarged, we expect eg to be approximated closely with some
g0h 2 Wh and so it follows that eE ! 0.

5. Numerical examples

5.1. One-dimensional tension bar

As a ®rst example showing the behavior of the suggested adaptive numerical method, we examine the
one-dimensional tension bar in Fig. 1. The bar is ®xed at one end and subjected to prescribed displacement
at the other. A small weakness (1%) is introduced in one element at the center of the bar. The relevant
material parameters are given in Table 1 for two di�erent material models: (1) softening plasticity (without
damage) and (2) hardening plasticity coupled to damage development. For both the material models, we

Fig. 3. Results for uniform mesh (softening plasticity): (a) load versus average strain, (b) currently active plastic zone, and (c) mesh

function.
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apply a loading sequence consisting of equal increments of prescribed end displacement Du, which corre-
sponds to the ``average strain'' increment Dea � Du=L0 � 2� 10ÿ5.

We ®rst consider the softening plasticity model. Fig. 2a and b show the result that is obtained from the
adaptive mesh in each loadstep (which is optimal in the sense that the error is equidistributed within the
currently active plastic zone). The mesh function for the adaptive mesh in the last step is shown in Fig. 2c.
Starting from nine equal elements (N �0� � 9, h�0�e � 0:111 m), we needed 12 remeshings to obtain this mesh,
which has 74 elements (N �12� � 74) and corresponds to the estimated error e�12�

E � 2:28� 10ÿ9. It is seen in
Fig. 2b that the size of the current plastic zone remains virtually constant as deformation progresses. The
result of the adaptive meshes is compared to that of a uniform mesh with N � 75 equal elements in Fig. 3.
In this case, the error in the last loadstep becomes eE � 9:07� 10ÿ9, which is signi®cantly larger than for the
optimal mesh.

A similar series of computations were carried out for hardening plasticity with kinetic coupling to
damage. Fig. 4 shows the results of adaptive meshes. In particular, Fig. 4b shows how the localization zone
is completely di�used at the onset of localization and then becomes narrower with increasing deformation,

Fig. 4. Results for adaptive meshes (hardening plasticity with damage): (a) load versus average strain, (b) currently active plastic zone,

and (c) mesh function in last loadstep.
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thus requiring adaptive remeshing in order to resolve the physical behavior. Fig. 4c shows the mesh
function in the last loadstep just before the calculation stopped because of too rapid damage growth in the
localization zone. Again, starting from N �0� � 9 in this step, we needed 46 remeshings to obtain N �46� � 158
corresponding to e�46�

E � 2:24� 10ÿ9. Finally, a comparison was made with a uniform mesh with N � 159
elements in Fig. 5. The error for this mesh in the last step was eE � 1:42� 10ÿ8, which is an order of
magnitude larger than for the optimal mesh. Moreover, it is noted that the stress±strain response, as shown
in Fig. 5a, is more ductile than that of the adaptive mesh in Fig. 4a. This re¯ects the fact that the local-
ization cannot be resolved appropriately with the uniform mesh.

5.2. Rectangular plate in plane strain

Numerical simulations of the localization characteristics were carried out for the rectangular plate in
plane strain, shown in Fig. 6. The plate is subjected to uniform prescribed vertical displacement along its
top edge, while the bottom edge is kept straight. Both edges can only transmit normal forces (perfectly
smooth boundaries). The prelocalized state is thus characterized as uniaxial strain/stress. Localization is
triggered by a slight reduction of ry (in a few elements) at the center of the plate.

Fig. 5. Results for uniform mesh (hardening plasticity with damage): (a) load versus average strain, (b) currently active plastic zone,

and (c) mesh function.
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The critical state will occur ®rst after signi®cant accumulation of damage corresponding to an initially
di�use localization zone. Like for the tension bar, it is concluded that the width of the localization zone
gradually decreases, cf. the results in Figs. 7±10. In particular, Fig. 9 shows how the currently active plastic
zone (within which Dl > 0) decreases with increasing overall deformation. All results are shown for
adaptive meshes with equidistributed error within the current plastic zone. The mesh density itself gives a

Fig. 6. Homogenous rectangular plate (subjected to prescribed end displacement) and used material parameters.

Fig. 7. Load versus average strain.
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Fig. 8. Displacement patterns (and adaptive meshes) for �ea � 0:008, 0.009, 0.010 and after the last loadstep (displacements are

magni®ed 10 times).

Fig. 9. Magnitude of incremental plastic strain (in terms of the plastic multiplier increment Dl) for �ea � 0:008, 0.009, 0.010 and in the

last loadstep.
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Fig. 10. Magnitude of accumulated plastic strain (in terms of the total plastic multiplier l) for �ea � 0:008, 0.009, 0.010 and after the last

loadstep.

Fig. 11. Initial mesh (with 101 elements), displacement (magni®ed 100 times) (with 1217 elements) and magnitude of accumulated

plastic strain (in terms of the total plastic multiplier l) of ®nal mesh.
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good impression of the localized solution, both in terms of the total deformation (Fig. 8) and the plastic
deformation (Figs. 9 and 10).

To verify that the adaptive method also works for nonhomogenous conditions (prior to plastic defor-
mation, i.e., after plastic deformation, the state is nonhomogenous even for the example above), a slightly
modi®ed problem was studied. The plate in Fig. 6 was modi®ed with W � 1:0 m and a square hole with side
length 0.2 m and its upper left corner at the center of the plate. The material parameters were chosen to
represent linear softening with H � ÿ50ry and l � 0:3 m. The results are shown in Fig. 11.

6. Concluding remarks

It is possible to device an adaptive strategy for gradient theory of plasticity based on the constitutive
subproblem with the plastic multiplier as the primary unknown. It appears that the adaptive meshes do
indeed represent the localization features of the deformation ®eld. The underlying a posteriori error esti-
mate is expressed for the energy norm of the plastic multiplier increment in each load (or time) step.
Moreover, in this paper, we have considered only the error distribution in space (and not its evolution in
time). A more comprehensive analysis must include the error from the equilibrium equation as well as the
error in space time. The proposed technique seems to be useful as a step towards this general strategy.
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